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h e Development of the Ancient 
h eories of Proportions*

A BSTR ACT:   h is paper is devoted to the reconstruction of the development of ancient 
theories of proportion. I argue that the development of ancient theories of proportion was 
motivated by the quest for one general mathematical theory and by inquiries of the mutual 
relations between the highest principles of Plato’s protology: the One (i.e. that which is 
arithmetical) and the Dyad (i.e. that which is geometrical). Six main types of the theory of 
proportion are analyzed, with a historical, mathematical and philosophical background.
KEYWORDS:   proportions • ancient mathematics • ancient philosophy • history of math-
ematics • Euclid • Eudoxus • h eaetetus

1. h e signii cance of proportions in ancient mathematics

The ancient theories of proportion were studied for ages. It is impossible 
to understand the mathematics of ancient Greece without understan-

ding the theories of proportion. Even more, without this, it is also impossible 
to understand quite a  large part of ancient and medieval philosophy. h e 
references to the proportion, harmony, and fundamental problems of math-
ematics are numerous in Pythagorean philosophy, in Plato and Aristotle. 
Moreover, many philosophical texts are based on some mathematical theo-
ries and results.

h e reconstruction of the ancient theories of proportion reveals in full 
l agrancy the dif erences between the ancient and modern way of thinking 
in mathematics.

h e main aim of the present paper is not to present a detailed exposi-
tion of the ancient theories of proportion, but only to give a general intro-
duction and description of the main lines of their development, and of the 
internal logic of this development.

*  Praca naukowa i nansowana ze środków budżetowych na naukę w latach 2010-2013 w ra-
mach projektu badawczego nr N N101 058939. h e research and the paper are supported 
i nancially by the Budget in 2010-2013; the scientii c grant nr N N101 058939.
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In the times of Pythagoras, in his school, Greek mathematics had one 
and only one principle: the number. In the background of this theory were 
some facts that are astonishing even today, such as the emergence of the har-
mony and the concordance of vibrating strings, of the volumes of air in the 
cavities of some instruments or of water contained in bowls. h e mutual re-
lations between their diameters were described by small (natural) numbers1. 
Irregular divisions of the above objects did not produce a consonance. h e 
Pythagoreans supposed at i rst that, for every single thing, it was possible to 
give the numerical description of its essential qualities. In particular, it was 
possible to describe “all mathematics” using numbers, for instance: to give 
a description of geometrical lines, surfaces and their correlations “at once” 
in terms of numbers.

A number for the Greeks was solely a natural number bigger than the 
number 1. A number was a multitude of monads. h e absolutely indivisible 
“1” was not a number, but the principle of numbers.

A discovery of the incommensurability of the side and the diagonal of 
a square was that of the mutual irreducibility of that which is arithmetical 
and that which is spatial or geometrical. For the Greeks, the proof of the 
incommensurability was not indirect, contrary to the modern (as well as to 
Aristotle’s) reconstructions using the law of excluded middle2. h eir proof 
was positive: it was to show that the diagonal is not a  number at all and 
that there are t w o  dif erent types of mathematical entities, i.e. numbers 
and magnitudes. If a  side is a  number, i.e. is measured by the line which 
corresponds to “1”, then the diagonal is an odd and even number at the same 
time3. h e mathematical reality was broken into two mutually irreducible 

1  Cf. h eon of Smyrna, Mathematics useful for understanding Plato by Theon of Smyrna, 
Platonic Philosopher, Ch. Toulis (Ed.), translated by R. Lawlor and D. Lawlor with an 
appendix of notes by J. Depuis, Secret Doctrine Reference Series, Wizzard Bookshelf, San 
Diego, 1979, Book II, especially section XIIa The discovery of the numerical laws of conso-
nances. (Cf. also h eon of Smyrna, Theonis Smyrnaei philosophi platonici expositio rerum 
mathematicarum ad legendum Platonem utilium, E. Hiller (Ed.), Teubner, Lipsiae 1878.)

2  Besides the law of excluded middle they had the principle that every number must be 
either odd or even. If something is odd and even simultaneously, it means that this “so-
mething” is not a number. A very interesting fact is that the ancients have had not a single 
series of numbers but m a n y  of them; cf. for instance the explanations given by h eon of 
Smyrna. In particular, the basic series were those of odd and even numbers. Every series 
starts with the unity (“1”), and every one has its own mechanism of generation. h erefore, 
for the ancients, numbers do not create o n e  domain. For Plato, there is no o n e  idea of 
“all numbers”; cf. Nicomachean Ethics 1096a 17–19, Eudemian Ethics 1218a 1–10, Politics 
1275a 34–65, etc.

3  Cf. Aristotle’s Analytica Priora 41a: “For all who ef ect an argument per impossibile infer 
syllogistically what is false, and prove the original conclusion hypothetically when some-
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realms: the geometrical and the numerical. Every number is measured by 
“1”, thus all numbers are commensurable.

We know now that the discovery of the incommensurability of some 
geometrical magnitudes resulted in the mutual irreducibility of geometry 
and arithmetic. h e proof of the incommensurability of the diagonal 
and the side of a square demonstrated that not “everything is a number”. 
h erefore, it was impossible in antiquity to think about geometrical lines 
and i gures in terms of some metrical concepts, such as the (numerical) 
lengths of lines or numerically measured areas. For us, the moderns, it is 
self-evident that the lines can be ordered and compared. However, when 
we try to grasp the situation of the ancient mathematical problem without 
our real numbers, or even fractions, or square roots and powers, then it 
seems obvious how dii  cult a problem it was to compare lines, i gures and 
natural numbers. h e ancients did not know about real or even rational 
numbers.

h e continuum, i.e. the Dyad, was inexhaustible for them. Moreover, 
the Dyad was really indei nite and inexpressible. h erefore, they had to grasp 
only the chosen objects from the continuum. It was unclear how many other 
possible objects there are “in” the Dyad. Even the names of “irrational” lines 
support these ancient convictions about the Dyad. It was not obvious that the 

thing impossible results from the assumption of its contradictory; e.g. that the diagonal 
of the square is incommensurate with the side, because odd numbers are equal to evens if 
it is supposed to be commensurate. One infers syllogistically that odd numbers come out 
equal to evens, and one proves hypothetically the incommensurability of the diagonal, 
since a falsehood results through contradicting this. For this we found to be reasoning per 
impossibile, viz. proving something impossible by means of an hypothesis conceded at the 
beginning”. (tr. A. J. Jenkinson; cf. A. J. Jenkinson, Analytica Priora, in A. J. Jenkinson 
(Ed.), Aristotle A. J. Jenkinson 12 v., Clarendon Press, Oxford, 1928. Retrieved 2001, from 
http://etext.virginia.edu/etcbin/toccer-new2?id=AriPrio.xml\&images=images/moden-
g\&data=/texts/english/modeng/parsed\&tag=public\&part=all). Cf. also reconstructions 
of this proof: theorem X. 117 (an unoriginal interpolation but a genuine reconstruction) 
in the Elements, or T. L. Heath, The thirteen books of Euclid’s ‘Elements’ translated from the 
text of Heiberg with introduction and commentary, vols. 1–3, University Press, Cambridge, 
1908; retrieved 2008, from http://www.wilbourhall.org/pdfs/, vol. III, pp. 2–3. h e same 
kind of reasoning was used in the proof fundamental for ancient mathematics that a line 
(or any other geometrical construct) is n o t  composed of indivisible parts. Proclus says: 
“For a i nite line would consist of either an odd or an even number of parts”, and, therefore 
“a magnitude consists of parts ini nitely divisible”; cf. Proclus, A Commentary On the First 
Book of Euclid’s Elements, G. R. Morrow (Ed.), Princeton University Press, Princeton, 
New Jersey, 1992, 277,25 – 279,4 (in Greek: idem, Procli Diadochi in Primum Elemen-
torum Librum Commentarii, G. Friedlein (Ed.), Leipzig 1873, repr. G. Olms, Hildesheim 
1967; retrieved 2009, from http://www.wilbourhall.org/). Cf. also T. L. Heath, The thirteen 
books …, vol. I, p. 268. 
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continuum had a “l at” well-ordered structure. h e modern proof of this fact 
is based on the very specii c concept of the arithmetized continuum, usually 
determined by many hidden assumptions. Other concepts of continuum are 
possible. In my opinion, the ancient concept of continuum is irreducible to 
the modern set-theoretic concepts. h erefore the “hunting for geometrical 
objects” that was possible in the Dyad was seen as the imposition of the strict 
limits forced by the One. One more such limit was imposed by proportions: 
a method that is alternative to the constructions from the assigned basic line. 
h ere was also the third method based on Plato’s theory of participation and 
his structure a  o n e  o v e r  m a n y ; I do not explain this point, however, in 
this paper4.

If we are going to compare the ancient continuum with a  modern 
theory, then n o n – w e l l – f o u n d e d  s e t s 5 are better than Zermelo-
Fraenkel set theory. Non-well-founded sets correspond at least to the an-
cient fundamental property of continuum: continuum is not composed of 
indivisible parts. On the other hand, Robinson’s non-standard analysis with 

4  h is point is the crux of my reconstruction of the foundations of ancient arithmetic as 
based on the highest principles: the One and the Dyad.; cf. my book Z. Król, Platon i pod-
stawy matematyki współczesnej. Pojęcie liczby u Platona, (Plato and the Foundations of 
Modern Mathematics. The concept of Number by Plato), Wydawnictwo Rolewski, Nowa 
Wieś 2005. About protology, the One and the Dyad, and Plato’s philosophy, cf. also S. 
Blandzi, Platoński project i lozoi i pierwszej, Wydawnictwo IFiS PAN, Warszawa 2002; J. 
N. Findlay, Plato: The Written and Unwritten Doctrines, Humanities Press, New York 
1974; D. H. Fowler, The Mathematics of Plato’s Academy. A New Reconstruction, Clar-
endon Press, Oxford University Press, Oxford 1987; K. Gaiser, Platons Ungeschriebene 
Lehre. Studien zur systematischen und geschichtlichen Begründung der Wissenschat en 
in der Platonischen Schule. Appendix: Testimonia Platonica. Quellentexte zur Schule 
und mündlischen Lehre Platons, Stuttgart 1963, (IInd ed. 1968); V. Hösle, Zu Platons 
Philosophie der Zahlen und deren mathematischer und philosophischer Bedeutung, 
„h eologie und Philosophie“, 1984, 59, 321–355; G. Junge, Platos Ideen-Zahlen, „Classica 
et Mediaevalia. Revue Danoise de Philologie et D’Histoire”, Librairie Gyldental, pp. 18–
38, Copenhague 1949; Z. Markowic, Platons Theorie über das Eine und die unbestimmte 
Zweiheit und ihre Spuren in der griechischen Mathematik, in: O. Becker (Ed.), Zur 
Geschichte der griechischen Mathematik, pp. 308–318, Darmstadt 1965; G. B. Matthews, 
S. Marc Cohen, The One and the Many, “Review of Metaphysics”, 1968, 21, 630–665; G. 
Martin, Platons Lehre von der Zahl und ihre Darstellung durch Aristoteles, „Zeitschrit  
für philosophische Forschung“, Bd. VII, 1953, 191–203; R. D. Mohr, The Number Theory 
in Plato’s Rep. VII and Philebus, “Isis”, 1981, 72, 620–627; L. Robin, La Théorie Plato-
nicienne des Idées et des Nombres d’après Aristote. Étude Historique et Critique, Georg 
Olms Verlag, Paris 1908; J. Stenzel, Zahl und Gestalt bei Platon und Aristoteles, B. G. 
Teubner, Leipzig, Berlin 1924; A. Wedberg, Plato’s philosophy of mathematics, Almquist 
and Wicksell, Stockholm 1965.

5  Cf. P. Aczel, Non-Well-Founded Sets, Center for the Study of Language and Information, 
Stanford, 1988.
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some ini nitely small magnitudes has nothing in common with the ancient 
continuum6.

Putting oneself in the real ancient situation is an ef ect of what I call 
the reconstruction of the hermeneutical horizon. h erefore, the i rst condi-
tion of such a  reconstruction is to suspend all modern interpretations of 
ancient theories of proportion in terms of modern algebra. Here, I do not 
present the details of this method. I would only like to present some results 
of this method, which are understandable without an analysis of the way in 
which they were obtained.

We also know that the ancient classii cations of the incommensurable 
lines are a  testimony to some unifying tendencies in mathematics7. h e 
ancients set their minds to the o n e  mathematics, i.e. to the only one and 
universal mathematical theory in which it would be possible to compare 
numbers and geometrical magnitudes. h e problem is similar to the modern 
quest for the physical “theory of everything” or quantum gravity.

h erefore, in this paper I would like to give some evidence that the 
ancient theories of proportion form the second stream –  apart from the 
classii cations of incommensurable magnitudes –  of ancient ef orts to unify 
arithmetic and geometry.

As a starting point, it is necessary to remind the modern reader one 
important fact. Fractions were absent from theoretical arithmetic and math-
ematics. h e numerical proportion 2 : 4 = 4 : 8 is not a statement about the 
equality of numbers or fractions, and it is not reducible to the equality 1/2 = 
1/2. h e proportion 2 : 4 = 4 : 8 ai  rms the equality of two r a t i o s , and these 
ratios are not numbers at all, though all the terms are numbers.

h e discovery of incommensurability exiled the Greeks from the 
earlier u n i q u e  paradise of numbers taking all of reality under its control. 
h erefore, at er a previous naive metrical approach to geometrical magni-
tudes, the Greeks had to create separate theories of proportion for numbers 
and for geometrical magnitudes. As I argue below, the i rst attempt to unify 
arithmetic and geometry, at er the discovery of incommensurability, was 
h eaetetus’ theory of partially mixed proportions. In this theory, it was 
possible to compare a numerical ratio with some geometrical ratios, how-

6  Cf. for instance A. Robinson, Non-Standard Analysis, Studies in Logic and the Founda-
tions of Mathematics, North-Holland, Amsterdam 1966. Leśniewski’s mereology is closer 
to the ancient view; cf. St. Leśniewski, On Various Ways of Understanding the Expressions 
‘Class’ and ‘Collection’, in: S. J. Surma, D. I. Barnet & V. F. Rickey (Eds.), St. Leśniewski 
‘Collected Works’, Nijhof  International Philosophy Series vol. 44/1, PWN, Kluwer Acade-
mic Publishers, Dordrecht-Boston-London 1927.

7  Cf. Z. Król, Platon i podstawy matematyki  …, op.cit.
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ever, it was impossible to compare the mixed ratios of the form “number to 
geometrical magnitude”. h e i rst theory of fully mixed ratios was Eudoxus’ 
famous theory of proportions.

From the technical point of view, the theories of proportion create 
the central part of an ancient mathematical method. h e development of 
these theories was the sine qua non of the famous works by Archimedes, 
Apollonius and others.

On the other hand, from the philosophical point of view, these theo-
ries are understood mainly in a metaphoric way, usually without even a basic 
mathematical knowledge about them. Speaking about a “dignity of numbers 
and proportion” explains nothing. Proportions are manifestations of the 
highest principle: the One, and they are not some unclear metaphors.

2. Early theories of proportion8: T_1

T_1 is just a mark because, in reality, it does not correspond to one theory, 
but rather to many problems gathering early views and methods concer-
ning proportions before the discovery of incommensurability (i.e. around 
460–430 B.C.). At this stage only a n a i v e  m e t r i c a l  approach is present.

To avoid any confusion, I would like to explain that what I mean by 
“naive metrical approach” is dif erent to that of W. R. Knorr9. Knorr distin-
guishes two approaches in pre-Euclidean mathematics. Firstly, the t o p o -
l o g i c a l  approach is present in the books I, III and IV of the Elements10. h e 

8  Cf. D. H. Fowler, Ratio in Early Greek Mathematics, “Bulletin of the American Mathe-
matical Society (New Series)”, 1979, 1, 807–848; idem, Book II of Euclid’s Elements and 
a  pre-Eudoxan theory of ratio, “Archive for History of Exact Sciences”, 1980, 22, 5–36; 
idem, Book II of Euclid’s Elements and a pre-Eudoxan theory of ratio, Part 2: Sides and 
diameters, “Archive for History of Exact Sciences”, 1982, 26, 193–209.

9  Cf. W. R. Knorr, The Evolution of the Euclidean Elements, D. Reidel Publishing Co., Do-
rdrecht 1975, pp. 6–8.

10  Cf. the following editions and translations of Euclid’s works: J. L. Heiberg, Euclidis 
Elementa, Teubner, Leipzig 1883–1888. Retrieved 2007, from: http://www.perseus.tut s.
edu/cgi-bin/ptext?lookup=Euc.+toc or from http://www.wilbourhall.org/; J. L. Heiberg, 
Euclidis opera omnia, J. L. Heiberg & H. Menge (Eds.), Bibliotheca Scriptorum Graecorum 
et Romanorum Teubneriana, vols. I–VIII, in: Aedibus B. G. Teubneri, Lipsiae 1883–9, 
(Vol. I: Euclidis Elementa, Libros I–IV Continens, Edidit Et Latinae Interpretatus Est I. 
L. Heiberg, Lipsiae 1883; Vol. II: Euclidis Elementa, Libros V–IX Continens, Edidit Et 
Latinae Interpretatus Est I. L. Heiberg, Lipsiae 1884; Vol. III: Euclidis Elementa, Librum X 
Continens, Edidit Et Latinae Interpretatus Est I. L. Heiberg, Lipsiae 1886; Vol. IV: Euclidis 
Elementa, Libros XI–XIII Continens, Edidit Et Latinae Interpretatus Est I. L. Heiberg, 
Lipsiae 1885; Vol. V: Continens Elementorum Qui Peruntur Libros XIV–XV Et Scholia In 
Elementa Cum Prolegmenis Criticis Et Appendicibus, Edidit Et Latinae Interpretatus Est 
I. L. Heiberg, Lipsiae 1888; Vol. VI: Euclidis Data Cum Commentario Marini Et Scholiis 
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topological approach is dominant in Ionic mathematics, the climax of which 
are the works of Hippocrates of Chios. h e material of these works is extant 
in (some parts of) Books I, III, VI and, in a part concerning the measure of 
a circle, in Book XII, and also in some other sources. h e main interest in 
this approach (or tradition) is “the examination of the topological relations 
of point, line, plane i gure; the angle is of particular interest; the triangle is 
the principal plane studied”.

Secondly, the m e t r i c a l  approach, present in Books II, IV, X, XIII 
and VI, more recent than the topological approach, was formed in the 
times of h eodorus. “h e principal problem is the measurement of area; the 
Euclidean treatment has the appearance of formalizing the naive metrical 
tradition typii ed by the still extant Heronian corpus”. Knorr explains the 
mutual relations between these two traditions11.

My n a i v e  m e t r i c a l  a p p r o a c h  means that mathematicians, 
being unaware of the incommensurability of some magnitudes, could create 
some part of geometry and arithmetic using only an intuitive concept of 
proportion. h ey considered numbers i m p l i c i t l y  as measures of every 
line and i gure.

h e traces of such an approach are extant even in the form of the proof 
of incommensurability, in which it is demonstrated that not everything is 
a number; cf. above. h e proof is possible o n l y  based on the assumption of 
such an approach. It is known also that the discovery of incommensurability 
was shocking for the ancients and this shock is understandable in connection 
with the naive metrical approach. h erefore, my naive metrical approach is 
at least not later than Knorr’s topological tradition.

There were, of course, different schools in mathematics, and it 
was mainly a Pythagorean opinion that “everything is a number”. It is 
known also that numbers for Pythagoreans were spatially extended and 

Antiquis, Edidit Henrikus Menge, Lipsiae 1896; Vol. VII: Euclidis Optica, Opticorum 
Recensio Theonis, Catoptrica Cum Scholiis Antiquis, Edidit I. L. Heiberg, Lipsiae 1895; 
Vol. VIII: Suplementum: Anaritii In Decem Libros Elementorum Euclidis Commentarii, 
Edidit Maximilianus Curtze, Lipsiae 1899, (retrieved 2009, from http://www.wilbourhall.
org/)); idem, Les trois livres de Porismes d’Euclide, M. Chasles (Ed.), Mallet-Bachelier, 
Imprimeur Libraire, Paris 1860; idem, Die Data von Euklid, nach Menges Text aus dem 
griechischen übersetztz und herausgegeben von Clemens Thaer, C. h aer (Ed.), Springer-
Verlag, Berlin, Göttingen, Heidelberg 1962; idem, Euclid Book ‘On divisions of i gures’ with 
a restoration based on Woepcke’s text and on ‘Practica geometrie’ of Leonardo Pisano, 
R. C. Archibald (Ed.), Cambridge at the University Press 1972; idem, Euclid’s Elements of 
Geometry., R. Fitzpatrick (Ed.), Richard Fitzpatrick (2007), (retrieved 2008, from http://
farside.ph.utexas.edu/euclid.html); D. E. Joyce, The Euclid’s ‘Elements’, Clark University 
(retrived 1997, from: http://aleph0.clarku.edu/~djoyce/ java/elements/elements.html).

11  Cf. W. R. Knorr, The Evolution …, op.cit., pp. 7–8.
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corporal, which is one evidence more for the naive metrical attitude at 
that time.

To the early beginnings of Greek mathematics belong many math-
ematical results based on the naive metrical concept of proportion and on 
its basic properties. For example, the Delian problem of the duplication of 
a  cube or the considerations on the lunes (of Hippocrates). Hippocrates’ 
investigations coni rm the existence of the early theories of geometrical pro-
portion. In T_1, also three kinds of proportion or means are known, i.e. the 
arithmetic, geometric and harmonic, the golden section, etc. Nicomachus 
of Gerasa12 and Iamblichus13  inform us that the three proportions were dis-
covered by Pythagoras14. Filolaus speaks about proportion in the fragment 
6 (Diels15). Nicomachus16 also ai  rms that the concepts of the harmonic and 
geometric mean were used by Filolaus. Iamblichus even says that Pythagoras 
was acquainted with the golden section by the Babylonians17.

To T_1 belong also partial investigations of the multiple and epimoric 
(epimorion diasthema, superparticularis) ratios. Later, in the scope of the 
theory designated T_2, it was possible to prove f o r  n u m b e r s  (Archytas) 
that every numerical epimoric ratio is of the form n : (n + 1); cf. Book VIII 
of the Elements. In the same way, the specii cation of the theory of prime 
numbers is done in T_3.

12  Cf. Nicomachus of Gerasa, Introductio arithmetica, R. Hoche (Ed.), B. G. Teubner, Leipzig 
1866., II. 22.1. Cf. also idem, Introduction to arithmetic, translated into English by Martin 
Luther D’Ooge; with studies in Greek arithmetic, by Frank Egleston Robbins and Louis 
Charles Karpinski, h e Macmillan company, New York; Macmillan and company, ltd., 
London 1926.

13  Cf. Iamblichus, In Nichomachi arithmeticam introductionem liber, H. Pistelli (Ed.), B. G. 
Teubner, Leipzig 1894, (reprint B. G. Teubner, Stuttgart 1975), p. 118, 23. Cf. also, idem, 
Theologoumena arithmeticae, V. De Falco (Ed.), B. G. Teubner, Leipzig 1922, (reprint B. G. 
Teubner, Stuttgart 1975).

14  Cf. also h eon, Mathematics useful …, op.cit.,  pp. 47, 116. h eon mentions even some 
other kinds of proportion.

15  Cf. H. Diels, Die Fragmente der Vorsokratiker, Bd. I–II, Weidmannsche Buchhandlung, 
Berlin 1922, and H. Diels, & W. Kranz, Die Fragmente der Vorsokratiker, VIth edition, 
Weidmannsche Buchhandlung, Berlin 1951. Cf. also C. A. Huf man, Philolaus of Croton 
Pythagorean and Presocratic. A  Commentary on the Fragments and Testimonia with 
Interpretive Essays, Cambridge University Press, Cambridge 1993, and idem, Archytas of 
Tarentum: Pythagorean, Philosopher and Mathematician King, Cambridge University 
Press, Cambridge 2005. Cf. also A. C. Bowen, The foundations of early Pythagorean 
harmonic science: Archytas, fragment 1, “Ancient Philosophy”, 1982, 2, 79–104, and M. 
Timpanaro Cardini, Pitagorici, Testimonianze e frammenti, 3 vols., La Nuova Italia, 
Firenze 1958–64; G. S. Kirk, J. E. Raven, & M. Schoi eld, The Presocratic Philosophers: 
A Critical History with a Selection of Texts, Cambridge Univ., Cambridge 1983.

16   Cf. Nicomachus of Gerasa, Introductio arithmetica, op.cit., II. 26.2.
17  Cf. Iamlichus, In Nichomachi arithmeticam …, op.cit.
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T_1 is divided into two stages in a rather natural way:

[Stage I.] At this stage, T_1 is developed as o n e  theory of proportions, 
i.e. ignoring the fact of incommensurability. It was also motivated by some 
problems in musical harmony. In early Pythagorean harmonics, the natural 
attitude was to consider jointly numerical and geometrical proportions; cf. 
the division of a canon. 

[Stage II.] At er the discovery of incommensurability, T_1 entered two 
other lines of development, T_1a and T_1b, however, every line was based 
on the previous work done at Stage I. T_1a contains the early arithmetic and 
theories of numerical proportions18. T_1b, on the other hand, contains the 
early theories, or sometimes only observations, concerning geometrical pro-
portions, and their scope was determined by the current mathematical needs 
of problem solving, but mathematicians became aware about the problems 
connected with the numerical description of geometry.

h e existence of T_1a and T_1b is indicated, among other things by 
parallel studies on geometrical algebra and arithmetic, the existence of two 
versions of many theorems, i.e. arithmetic and geometric19 (including the 
theorem of Pythagoras), the concept of similar numbers and the analysis of 
related problems and theorems from the early Pythagorean arithmetic, e.g. 
theorem IX. 3020. h e theorems about the gnomic divisions of numbers in the 
so called psephoi-arithmetic21 together with Pythagorean number triples22. 

18  h e basic sources for the reconstruction of the content of T_1a are the works of Nico-
machus, h eon, Proclus and the Pythagoreans. In the present paper I have to limit the 
exposition to the most general remarks and observations.

19  Knorr writes: “h e division of the proofs on incommensurability into separate arithmetic 
and geometric parts is standard in the historical accounts of these studies”; cf. for instance, 
B. L. Van der Waerden Arithmetik der Pythagorerer, p. 682f . Cf. also our Chapters VII 
and VIII.” (cf. W. R. Knorr, The Evolution …, op.cit., p. 107, footnote 106). Of course, this 
coni rms also the existence of T_1b as well. Cf. also B. L. Van der Waerden, Science Awak-
ening, English tr. A. Dresden, P. Noordhof , Holland 1954, and B. L. Van der Waerden, Die 
Harmonielehre der Pythagoreer, „Hermes“, 1943, 78, 163–199.

20  Note the conceptual similarity of Hippocrates’ dei nition of proportion quoted below and 
theorem IX. 30.

21  Numbers in early Pythagorean arithmetic were represented by discrete objects: small 
stones, sticks, dots, etc. Only the theories of proportion T_5 and T_6 made it possible 
to represent numbers by continuous lines.  Psephoi-arithmetics was reconstructed by O. 
Becker. For more information, cf. also Knorr, The Evolution …, op.cit., Chapter V. h e 
problem of number representations is described by W. R. Knorr (The Evolution …, op.cit.), 
especially in Chapters V, VII and VIII.

22  Cf. for instance theorem 11, p. 155 in W.R. Knorr, The Evolution …, op.cit.
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h is theorem is connected with early Pythagoreanism by Proclus23 and 
Heron24, i.e. numbers satisfying Pythagoras’ theorem, and some theorems 
on the divisibility of numbers25, also belong to T_1a. Ancient harmonics 
had to be based on the intuitive foundation which was exactly described by 
h eaetetus’ theory T_5. h e last fact indicates also the Greek names of the 
musical intervals and the concept of diastema26.

h e main representative of T_1b was Hippocrates of Chios. From the 
historical sources (especially from Simplicius’ information about Hippocra-
tes’ squaring of lunes27), it seems that theorems I. 47, II. 12, II. 13, and a ver-
sion of XII. 2 were known to him. h erefore a part of mathematics from the 
books I, II and VI of the Elements was known in the times of Hippocrates. 

On the other hand, Proclus28 informs us that Hippocrates reduced the 
problem of the duplication of a cube to the construction of two geometric 
means between two given lines. 

Simplicius (and Eudemus) quotes Hippocrates’ dei nition of propor-
tional magnitudes:

Similar segments are the same parts of the circles respectively, as 
for instance a semicircle is similar to a semicircle and a third part of 
a circle to a third.

Knorr adds the following important comment which fully supports 
my naive metrical approach:

h at is, he is employing a conception of ‘part’ which is valid only for 
commensurable magnitudes, although many of the magnitudes in his 
constructions are, in fact, incommensurable29.

23   Proclus, Procli Diadochi in Primum …, op.cit., p. 428.
24  Cf. Heron of Alexandria, Heronis Alexandrini opera quae supersunt omnia. Volumen IV, 

Heronis Dei nitiones cum variis collectionibus, Heronis quae feruntur Geometrica, I. L. He-
iberg (Ed.), B. G. Teubner, Leipzig 1912, (reprint B. G. Teubner, Stuttgart 1976), IV, 218–220.

25  Heron uses some such theorems concerning the divisibility by 3 and 4, which are formu-
lated in terms of Pythagorean triples.

26  Cf. Á. Szabó, The Beginnings of Greek Mathematics, Akademiai Kiado, Budapest; D. 
Reidel, Dordrecht 1978, Part II. Cf. Also, idem, Die frühgriechische Proportionenlehre im 
Spiegel ihrer Terminologie, “Archive for History of Exact Sciences“, 1965, 2, 197–270. 

27  Cf. Simplicius’ Commentary to Physics of Aristotle; Comm., 60.22 – 68.32. Cf. also Proclus, 
Procli Diadochi in Primum …, op.cit, p. 66, and W. R. Knorr, The Evolution …, op.cit., 
pp. 40–41 (and footnotes 60–62), B. L. Van Der Waerden Science Awakening, op.cit., pp. 
131–136, and T. L. Heath, The Thirteen Books of Euclid’s Elements, vols. I–III, Cambridge 
University Press, Cambridge 1926, vol. I, pp. 182–209.

28  Cf. Proclus, Procli Diadochi in Primum …, op.cit., p. 213.3–11.
29  Cf. W. R. Knorr, The Evolution …, op.cit., p. 41.
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h is fact indicated by Knorr corroborates the general character of 
T_1, as based not on the mature theory of proportion but rather on some 
non-explicit assumptions and metrical intuitions30. In any case, it was possi-
ble to obtain a part of the material from Book II of the Elements with the use 
of some naive metrical intuitions, i.e. a part of ancient geometrical algebra, 
as well as a part of the theory of the similarity of i gures. h e theory of the 
similarity of i gures in Book VI is also based on some metrical intuitions 
only. A more exact account of these intuitions was possible in the frames of 
T_5 and T_6.

Proclus31, using the History of Eudemus of Rhodes, ascribes the dis-
covery of the method of the application of areas (which is the main method 
in geometrical algebra) to the early Pythagoreans. However, only some of 
the material from the books II and VI of the Elements was known to the 
Pythagoreans, i.e. before the times of h eodorus and Archytas. In the times 
of Hippocrates, a large part of the theory of the similarity of triangles was 
known32.

h e naive metrical approach assumes the possibility of the comparison 
of geometrical magnitudes. h e main dii  culty in this approach is the lack of 
a unit of common measure for the magnitudes to be compared, because in 
many cases, they are incommensurable. h erefore, the fact which is obvious 
for almost every modern student as well as scholar, that the lines can be or-
dered based on their metrical properties (or even well-ordered) was, in fact, 
problematic and unclear following the discovery of incommensurable mag-
nitudes. h is problem caused the emergence of the ancient classii cations of 
incommensurable lines, and is testii ed by the mutual relations between the 
ancient theories of proportion and the classii cations. For instance, Knorr 
explains the connection between the geometrical algebra from Book II with 
h eodorus’ investigations of incommensurabilities33.

Presenting more historical sources concerning T_1 is beyond the 
scope of this paper.

3. h eories of numerical proportions motivated by the 
inquiries of incommensurabilities: T_2 and T_3

At er T_1 had entered into Stage II, theories T_2 and T_3 are the next stages 
of  T_1a. h ey are theories of numerical proportions in arithmetic. T_2 is 

30  Cf. also ibidem, p. 41, and footnote 62.
31  Cf. Proclus, Procli Diadochi in Primum …, op.cit., pp. 176, 186.
32  Cf. W.R. Knorr, The Evolution …, op.cit., pp. 204–205, footnote 18.
33  Cf. ibidem, p. 96.
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Archytas’ (according to Van der Waerden) theory of proportions, extant 
mainly in Book VIII of the Elements. T_3, known mainly from Book VII 
of the Elements, was most probably created by h eaetetus of Athens, who is 
also the author of the material from Books X, XIII and, partly, from Book 
VI. Van der Waerden argued that Book VII contains an older theory of 
proportion than Book VIII34, because the book VII is based on the dei nition 
of proportion very similar to the dei nition quoted by Hippocrates. However, 
in my opinion, these two dei nitions are dif erent because the i rst (i.e. that 
of Hippocrates) concerns geometrical magnitudes, and the second, i.e. Dei -
nition VII. 2035, based on Dei nitions VII. 336 and VII. 437, is concerned only 
with numbers. h e dei nitions are only apparently similar.

h eaetetus’ authorship is settled by strict connections between Book 
VII and the classii cation from Book X of the Elements.

Some procedures in the ancient theories of proportions for numbers 
and for magnitudes are usually identii ed by scholars, which is an error. For 
instance, there was no single anthyphairetic procedure, but rather many dif-
ferent procedures: those for numbers, for magnitudes, and one more in T_5, 
because they were used by the dif erent theories of proportion. 

In T_2 and T_3, all terms in the proportion, and every ratio, are only 
numbers. In T_3, one can exchange the “places” of  some terms: if a : b = c : 
d, where “a”, “b”, “c”, “d” are numbers, then a : c = b : d, by theorem VII. 13.

h eories T_2 and T_3 were created in order to solve specii c mathemati-
cal problems. For example, h eaetetus’ theory of proportion T_3 creates the 
basis for the further, i.e. in T_5, division of geometrical magnitudes on parts 
corresponding to square and cube numbers, and contains the arithmetical 
preliminaries for T_5. h e connection of both T_2 and T_3 with the classii ca-
tion of commensurable magnitudes is excellently explained by W. R. Knorr38.

On the other hand, the mutual relations between these theories are 
relatively well examined. Still, it is necessary to explain the connections of 
T_3 with the new theory T_5. One more problem is the dependence of the 
mathematics of T_2 on the historically younger T_3.

In general, T_2 is based on an intuition of Hippocrates’ dei nition of 
proportional magnitudes applied to numbers. h is concept was precisely 

34  Cf. B. L. Van Der Waerden, Science Awakening, op.cit., pp. 49, 107–116.
35  Def. VII. 20: “Numbers are proportional when the i rst is the same multiple, or the same 

part, or the same parts, of the second that the third is of the fourth.”.
36  Def. VII. 3: “A number is a part of a number, the less of the greater, when it measures the 

greater”.
37  Def. VII. 4: “But parts when it does not measure it”.
38  Cf. W.R. Knorr, The Evolution …, op.cit., mainly in Chapters VII and VIII.
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dei ned by h eaetetus in Dei nition VII. 20 in arithmetic, i.e. for commen-
surable magnitudes.

h e additional motivation for the creation of Archytas’ T_2 was some 
problems in ancient harmonics. According to Á. Szabó39, the discovery of in-
commensurable magnitudes is connected with the problem of the division of 
a canon in harmonics. At i rst, these enquiries were coni ned to the scopes of 
T_1. However, the biggest part of the Sectio Canonis and the De Institutione 
Musica of Boetius is connected with T_240. h e fragments from Archytas’ 
treatise on harmonics41 contains similar dei nitions of the mathematical 
means as Plato’s Timaeus42.

T_4, the next theory of proportion, was motivated also by some prob-
lems in ancient harmonics.

4. h eory of purely geometric proportions: T_4

h is theory is extant mainly in Book VI of the Elements. In T_4, all terms 
are exclusively some geometrical magnitudes, such as lines, circles and 
plane i gures. h is theory was elaborated by h eaetetus of Athens in a s y s -
t e m a t i c  way.

T_4 is independent from Eudoxus’ theory of Book V (here designated 
T_6). h e theory was reconstructed by Töplitz43, Becker44 and Van der Waer-
den in the quoted works.

39  Cf. Á. Szabó, The beginnings …, op.cit., passim.
40  It concerns, for example, Archytas’ famous theorem that there are no numerical means 

between numbers n and n+1. h e problem, of course, has a geometrical solution, although 
such a geometric division of a canon is not endowed with beauty and harmony. All basic 
musical intervals are of the form n: (n +1); e.g.: 2:1, 4:3, 3:2, 9:8. h e empirical observation 
of the emergence of consonants, if the division of a canon is based on some simple numeri-
cal proportions, linked ancient harmonics and arithmetic, and, in addition, created one 
more evidence for the role of the One and the Dyad. Cf. also Boetius, Boetius und die 
griechische Harmonik. Des Anicius Manlius Severinus Boetius ‘Fünf Bücher Über die 
Musik’, O. Paul (Ed.), Verlag von F. E. C. Leuckart (Constanin Sander), Leipzig 1872.

41  h e fragment is extant, for example, in Porphyry’s In Ptolemai Harmonica; cf. Diels, On 
Harmonics.

42  Cf. Tim. 31c – 32a, 36a–b.
43  O. Töplitz, Das Verhältnis von Mathematik und Ideenlehre bei Platon, „Quellen und 

Studien zur Geschichte der Mathematik, Astronomie und Physik“, Abt. B.1, 1931, 3–33, 
and O. Töplitz, Die mathematische Epinomisstelle, „Quellen und Studien zur Geschichte 
der Mathematik, Astronomie und Physik“, Abt. B.1, 1931, 334–346.

44  Cf. O. Becker, Mathematische Existenz. Untersuchungen zur Logik und Ontologie mathe-
matischer Phänomene, „Jahrbuch für Philosophie und phänomenologische Forschung“, 
1927, 8, 539–809; idem, Die dihairetische Erzeugung der platonischen Idealzahlen, „Quel-
len und Studien zur Geschichte der Mathematik, Astronomie und Physik“, Abt. B., 1931, 1, 
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Becker showed how to obtain a geometric analogue of the theorems 
VII. 13 and V. 16 using only geometric reasoning45. From proportion A : B 
= C : D it follows that: 

rec. AD = rec. BC = rec. DA = rec. CB46.
From the above we have that A : C = B : D47. Here we use the fact 

trivial but extremely interesting in antiquity that A : C = rec. AD : rec. CD, 
which connects lines with surfaces48.

Another assumption in the proof is that:
rec. AD : rec. BD = A : B = C : D = rec. BC : rec. BD.
h e only thing remaining is to prove that, if in a geometric proportion 

the second terms are equal, the i rst terms are equal as well, i.e. rec. AD = rec. 
BC. h is requires Archimedes’ lemma, which follows –  as is demonstrated 
also by Becker –  from theorem X. 1. All the theorems used were known 
before the times of Eudoxus.

Now, it is possible to establish which theorems from Book VI of the 
Elements were know in T_1b, and which are some new theorems belonging 
to T_4. Knorr demonstrates that, for the proofs of the theorems from Book 
X, the following theorems are necessary: VI. 1, 14, 16, 17 and 2249. h ese 
theorems form a separate group in the book VI.

5. First attempt to metricize geometry: h eaetetus’ 
theory of mixed proportions T_5

h is new theory of proportions is an intermediate stage between T_4 
and Eudoxus’ theory T_6. T_5 is also the i rst theory at er the discovery 
of incommensurability which successfully, though in part only, unii ed 
numerical and geometric theories of proportions in one theory of mixed 
proportions.

464–501; idem, Eudoxos-Studien I. Eine voreudoxische Proportionslehre und ihre Spuren 
bei Aristoteles und Euklid, „Quellen und Studien zur Geschichte der Mathematik, Astro-
nomie und Physik“, Abt. B. 1, 1933, 311–333; idem, Lehre vom Geradem und Ungeradem 
im Neunten Buch der euklidischen Elemente, „Quellen und Studien zur Geschichte der 
Mathematik, Astronomie und Physik“, Abt. B. 3,  1936, 533–553; idem, Die Aktualität 
des Pythagoreischen Gedankens, in: D. Henrich, W. Schulz & K.–H. Volkmann-Schluck 
(Eds.), Die Gegenwart der Griechen im neueren Denken. Festschrit  für Hans Georg 
Gadamer zum 60. Geburtstag, pp. 7–30, J. C. B. Mohr, Tübingen 1960.

45  Cf. O. Becker, Eudoxos-Studien I, op.cit., and B. L. Van der Waerden, Science Awakening, 
op.cit., pp. 175–179.

46  „rec. AB” means „rectangle AB”, and „sq. AB” means “square AB”
47  Cf. O. Becker, Eudoxos-Studien I, op.cit., p. 311.
48  Cf. Aristotle’s Topica 158b.
49  Cf. W. R. Knorr, The Evolution …, op.cit., p. 305.
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In my opinion, the possibility to equal a numerical ratio with a geo-
metric ratio required a particular theory of proportions, dif erent from T_4. 
h erefore T_5 is a theory the terms of which are numbers a n d  some geo-
metric magnitudes, i.e. the same as in T_4. T_5 makes it possible to compare 
numerical ratios and geometric ratios. h eir terms are numbers: a, b, c, …, 
and magnitudes: A, B, C, … . For example, A : B can be a ratio composed 
of two lines, or of two squares, or of a  line and a  polygonal plane i gure. 
h e only limitation is the impossibility to compare the ratio of a number to 
a magnitude with the other ratios, i.e. it is impossible to prove an equivalent 
of theorems V. 16 and VII. 13 from the Elements. h us, T_5 contains propor-
tions of the form:

a : b = A : B, but the proportions of the kind a : B = A : b are excluded.
h e initial theorems from Book X, which seem to be superl uous from 

the point of view of Eudoxus’ theory, create the base for T_5. In contradic-
tion to what is usually assumed, it is T_5 that the author of Epinomis indi-
cates, instead of T_650. h e fragment 819d – 820e (cf. especially 820c 4) of the 
Epinomis is concerned with T_5, and not T_6, because in T_6, magnitudes 
and numbers are comparable (cf. theorem V. 16). h erefore, E. Sachs is right: 
there is a connection between Book X of the Elements and this fragment51.

Moreover, T_5 and T_4 are connected with the book X, together with 
Becker’s reconstruction presented in the previous section, make it possible to 
eliminate T_6 from every proof in Book X altogether. h e use of the theory 
from Book V becomes needless. 

Also, at er Euclid’s edition of the material from Book X, there are still 
traces of T_5. For example, Knorr writes:

A second problem is that the Euclidean proof [of the theorem X. 9 – 
Z.K.] employs two conceptions of proportion (V, Def. 5 for magnitudes 
and VII, Def. 20 for integers) without having  proved their equivalence 
in the case of commensurable magnitudes.
At some point the arithmetic and geometric parts of the theory [i.e. 
the theory from Book X –  Z.K.] were separated, for only the latter is 
contained in the Elements; we have seen how this separation gave rise 
to a logical l aw in the Euclidean theory, whereby a strictly geometric 
theorem, X. 9, came to be applied as an arithmetic condition of com-
mensurability.
Euclid proves this as X. 5 and X. 6. While a modern theory of rational 
magnitudes would treat this as a dei nition, Euclid is correct to provide 

50  Cf. O. Töplitz Das Verhältnis von Mathematik und Ideenlehre bei Platon, op.cit., pp. 
13–15.

51  Cf. E. Sachs, Die fünf Platonischen Körper, Weidmann, Berlin 1917.
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it as a  theorem, since his own dei nition of commensurable magni-
tudes (X, Def. 1) is based on the existence of a common measuring 
magnitude. But in his proof of X. 5 he appears to err in the same way 
as we mentioned in connection with X. 9. h at is, he applies VII, Def. 
20, the dei nition of proportion for integers, to the case of a proportion 
in which two of the terms are not integers, but rather commensurable 
magnitudes. What is needed, therefore, is a  proof that a  proportion 
of magnitudes (in the sense of Book V), where the magnitudes are 
commensurable, satisi es the properties of a proportion in the sense of 
Book VII. h e absence of this step indicates that the original form of 
X. 5 did not resort to the Eudoxean dei nition, but that Euclid failed to 
perceive the necessity of revision52.

h e above facts indicate that:
1. Euclid replaced T_5 by Eudoxus’ T_6.
2.  h e basic form of the initial part of Book X is taken directly from 

a work of h eaetetus, and this initial part is almost unchanged.
3.  Lack of the realization of T_5 is responsible for the problems raised 

by Knorr (and others).
h e main method in T_5 is the construction with the ruler and com-

passes of two lines or areas in the ratio as a number has to a number (and 
vice versa). I made the reconstruction of this method53. h e method is based 
on antyphairetic reasoning.

h e second possible operation in T_5 is the g e o m e t r i c  i nding the 
greatest common divisor of two numbers by i nding of the corresponding 
greatest common measure of two lines (or of two areas), and vice versa. h e 
latter operation indicates the so-called antyphairetic theory of proportions 
as a  method of T_554. It is also possible that the antyphairetic theory of 
proportions was developed earlier than T_5. If we are aware of the exist-
ence of dif erent (i.e. numerical and geometrical) antyphairetic methods, 
antyphairesis is likely a part of T_5.

T_5 together with T_3 and T_4 make it possible to prove every 
theorem from Book X without Eudoxus’ theory from Book V. In particular, 

52   Cf. W. R. Knorr, The Evolution …, op.cit., p. 253, 238), and pp. 253–254.
53  Cf. the proof of Lemma 6 in Z. Król, Platon i podstawy …, op.cit. It is known also that 

Hippocrates of Chios was able to construct two lines such that the squares on them were 
in proportion as 2 : 3 and 6 : 1; cf. B. L. Van der Waerden Science Awakening, op.cit., p. 
136.

54  h is theory, based on Euclid’s algorithm, is reconstructed by Knorr, who uses some of 
Becker’s i ndings. Cf. W. R. Knorr, The Evolution …, op.cit., Chapter VIII and Appendix 
B. However, as I  mentioned before, Knorr does not discern antyphairetic methods in 
geometry and in arithmetic.
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theorem V. 16 is replaced by its purely geometric analogue reconstructed by 
Becker.

Let us notice that T_5 is independent from the choice of the assigned 
basic line, although such a connection can be made.

6. Eudoxus’ theory of proportions: T_6

A very natural generalization of h eaetetus’ theory T_5 is Eudoxus’ famous 
theory of proportions, extant in Book V of the Elements. Nevertheless, even 
T_6 does not unify arithmetic and geometry into a single theory, because 
there are still many geometrical objects which are not accessible with the 
methods of this theory. For instance, it is impossible to apply T_6 to ini nite 
and indei nite objects. h is theory concerns only the so-called Archimedean 
magnitudes. Two magnitudes are “Archimedean” if there is a number n such 
that the lesser magnitude, when increased n-times, will become equal to 
or bigger than the second magnitude. Obviously, the famous Archimedes’ 
lemma assumes only i nite magnitudes55. And there are still many non-
Archimedean magnitudes, such as horned angles. h erefore, even with the 
use of T_6, the Dyad was still inexhaustible, and not reducible to the limiting 
One.

In Antiquity establishing which magnitudes are Archimedean was 
a  separate problem, and it was necessary to prove this fact for each given 
magnitude. For example, we know that there was a dispute in Antiquity about 
the nature of an angle, if it is a quality (Eudemus) or a quantity (Plutarch of 
Athens, Apollonius, Carpus of Antioch) or a relation (Euclid)56.

h e emergence of T_6 creates a  revolution in ancient mathematics 
because it was the i rst n o n - c o n s t r u c t i v e  theory. O. Becker explains it 
in the Mathematische Existenz. h e fundamental Eudoxean dei nition V. 5 
is non-constructive:

Magnitudes are said to be in the same ratio, the i rst to the second and 
the third to the fourth, when, if any equimultiples whatever are taken 

55  “If there be (two) unequal lines or (two) unequal areas, the excess by which the greater 
exceeds the less can, by being [continually] added to itself, be made to exceed any given 
magnitude among those which are comparable with [it and with] one another”, cf. On 
spirals, (cf. T. L. Heath, The Works of Archimedes Edited in Modern Notation with Intro-
ductory Chapters by T. L. Heath with a Suplement ‘The Method of Archimedes’ Recently 
Discovered by Heiberg, Dover Publications, Inc., New York 1912; retrieved 2009, from 
http://www.wilbourhall.org/, p. 155). Cf. also The quadrature of the parabola, idem, op.cit. 
p. 234.

56  Cf. Proclus, The Commentary …, op.cit., pp. 100–102.
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of the i rst and third, and any equimultiples whatever of the second 
and fourth, the former equimultiples alike exceed, are alike equal to, 
or alike fall short of, the latter equimultiples respectively taken in 
corresponding order.

h e above dei nition is formulated for every possible combination 
of natural numbers and therefore, it is impossible to check this condition 
explicitly. Also, dei nition V. 5 uses also concepts of actually ini nite scopes.

T_6 makes it possible to compare mixed ratios, such as “a number to 
a line” or “a i gure to a number”. Moreover, it is possible to transform every 
proportion of mixed ratios onto h eaetetus’ equality of purely numerical 
and geometrical ratios, and vice versa. h erefore, for example, from a : b = 
A : B,  by theorem V. 16, we get: a : A = b : B.

We can imagine now, how it was possible for Eudoxus to i nd his 
famous dei nitions of proportional magnitudes V. 1 –  V. 7 with the use of 
T_5. Eudoxus was aware of the existence of the groups (“families”) of lines 
that are commensurable and incommensurable. He was aware also that 
that there is an indei nite number of families of lines commensurable i n 
l e n g t h , and incommensurable i n  l e n g t h  with the lines from the other 
families. It is possible to choose a local assigned basic line for every family. 
If so, to every h eaetetus’ proportion in one family, there is a corresponding 
h eaetetus’ proportion in the other, i.e. the corresponding proportions are 
determined by the ratio of the same numbers. For example, we can consider 
in every family the lines which are in the same ratio 4 : 2 in relation to the 
basic line in the given group.

We can i nd such proportions by the construction of the greatest com-
mon measure of any two lines that are commensurable in length. Lines are 
commensurable in length if they are in ratio as a number has to a number, but 
in relation to the basic line (in a group) which corresponds to 1. h e greatest 
common measure of any two lines that are commensurable in length in the 
given group is equal to the line obtained from the division of the basic line in 
the ratio equal to the numerical ratio between these lines.

Regarding the comparison of the lines from the dif erent groups, it 
is sui  cient to know which measure, i.e. which basic line, is lesser, equal or 
greater. h e relation of being lesser, greater or equal for the basic lines is tran-
sitive, for all the other lines, and conservative. For instance, if in one group 
of lines we have two lines in the least ratio 4 : 2, and if the common measure 
in the i rst group is greater than the measure in the second group, then the 
corresponding lines in the second group are lesser than their counterparts 
in the i rst pair of lines. Using these intuitions it is possible to see how V. 16 
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“works” and that the sine qua non condition of the proportionality of lines is 
Archimedes’ lemma. h erefore, to create T_6, it is necessary to operate with 
the groups of ini nite scopes. It is also visible now that the ancient extensions 
of the classii cation of incommensurable lines from Book X were subsequent 
steps leading to T_6.

I  recommend the reader interested in a  historical and philological 
analysis of Greek terminology concerning the ancient theories of proportion 
to consult the works of Á. Szabó57.

Here the theory of proportions by Ommar Khayyam, a mystical poet 
and a mathematician (XIth century A.D.), is worth noting. It is a peak of 
the development of the ancient theories of proportions. In the Discussion of 
Euclid’s dii  culties, Khayyam gives the dei nition of proportionality of four 
magnitudes, irrespective of whether they are discrete or continuous58.

Four magnitudes are proportional (A : B = C : D), if some numbers, 
obtained in the following way, are equal. Assuming that B is greater than 
A, and D, than C, we can subtract from B the multiple of A, given by the 
number constructed as in the initial theorems of Book X of the Elements or 
in my Lemma 659. We obtain a remainder smaller than A (and B). Next, we 
repeat the above procedure using the remainder instead of A. As a result we 
get a second number. h ere are two possibilities: 1) the process will terminate 
in a i nite number of steps (if A is equal to B –  in the i rst step) in the case 
when A and B are commensurable, or, 2) we can repeat the procedure to in-
i nity, if the magnitudes are incommensurable. We can do the same with the 
magnitudes C and D. Khayyam dei ned that A, B, C, and D are proportional 
if the numbers obtained for A  and B, at every stage, are the same as the 
numbers obtained for C and D. He next demonstrated that this antyphairetic 
dei nition of proportionality is equivalent to Eudoxus’ dei nition from Book 
V. He established also that the ratios are equal to, greater than or smaller 
than the other ratios if  the corresponding numbers are respectively equal, 
greater or smaller. Khayyam determined also the product of ratios. h e latter 
was undei ned in ancient mathematics.

Since than, the proportion between any f i n i t e  magnitudes could be 
considered as determined by some s e t  of numbers. Nasir ad-Din at-Tusi 
treats proportions in this way. Geometry becomes gradually an arithmetized 
theory.

57 Cf. also J-L. Gardies, L’héritage épistémologique d’Eudoxe de Cnide. Un essai de reconsti-
tution, Libraire Philosophique J. Vrin, Paris 1988.

58 Cf. B. L. Van der Waerden, A History of Algebra. From al-Khwārizmī to Emmy Noether, 
Springer-Verlag, Berlin, Heidelberg, New York, Tokyo 1985., pp. 29–31.

59 Cf. Z. Król, Platon i podstawy …, op.cit.
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h e crux of Khayyam’s theory is the ancient theory of the ini nite divis-
ibility of continuum. For, he establishes the possibility to i nd in every case the 
fourth proportional magnitude to any given three magnitudes on this ground.

h e next steps of the development of the theories of proportion are 
connected with the emergence of the modern ini nite model for Euclidean 
geometry. A very important stage leading to the absolute space was Nicolas 
Oresme’s theory of proportion.

7. Concluding remarks

h e proposed reconstruction of the main lines of the development of the 
ancient theories of proportion60 is supported by many sources and results, cf. 
for instance O. Becker’s works.

60 Cf. also I. Grattan-Guiness, Numbers, Magnitudes, Ratios and Proportions in Euclid’s 
Elements: How Did He Handle Them?, “Historia Mathematica”, 1966, 23, 355–75; M. Hand, 
Mathematical structuralism and the Third Man, “Canadian Journal of Philosophy”, 1993, 
23, 179–192; H. Hasse, & H. Scholz, Die Grundlagenkrisis der griechischen Mathematik, 
unknown binding 1928; T. L. Heath, A history of Greek mathematics, Oxford University 
Press, Oxford 1921; J. Itard, Les livres arithmétiques d’Euclide, “Histoire de la pensée 10”, 
Hermann, Paris 1961; J. Klein, Die griechische Logistik und die Entstehung der Algebra, 
I. Tl., „Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik”, 
Abt. B.3, 1936, 18–105; idem, Greek Mathematics and the Origin of Algebra, Cambridge 
Mass. & London 1968, (republished Dover 1992); I. Mueller, Philosophy of Mathematics 
and Deductive Structure in Euclid’s Elements, MIT Press, Cambridge, Mass./London 1981; 
A. Jones, (Ed.), Pappus of Alexandria. Book 7 of the Collection. Part 1: Introduction, 
Text, and Translation. Part 2: Commentary, Index, and Figures, Sources in the History 
of Mathematics and Physical Sciences vol. 8, Springer-Verlag, New York 1986; P. Palmieri, 
The Obscurity of the Equimultiples: Clavius’ and Galileo’s Foundational Studies of Euclid’s 
Theory of Proportions, “Archive for History of Exact Sciences”, 2001, 55, 535–597; Pappus 
d’Alexandrie, La Collection Mathématique. OEuvre traduite pour la première fois du Grec 
en Français, avec une introduction et des notes, 2 vols., P. Ver Eecke, Desclée De Brouwer, 
Paris and Bruges 1933; K. Saito, Duplicate Ratio in Book VI of Euclid’s Elements, “Historia 
Scientiarum”, 2nd Ser., 1993, 3–2, 115–135; idem, Phantom Theories of Pre-Euclidean 
Proportions, “Science in Context”, 2003, 16(3), 331–347; H. Scholz, Warum haben die 
Griechen die Irrationalzahlen nicht aufgebaut?, „Kant-Studien”, 1928, 33: 35–72; J. Vogt, 
Zur Entdeckungsgeschichte des Irrationalen, „Bibliotheca Mathematica”, (3d.s.), 1913–4 14, 
9–29; K. Von Fritz, K., The discovery of incommensurability by Hippasus of Metapontum, 
“Annals of Mathematics”, 1945, 46, 242–64; H. G. Zeuthen, Geschichte der Mathematik im 
Alterturn und im Mittelalter, Kopenhagen, Leipzig 1902; idem, Sur l’origine historique de 
la connaissance des quantités irrationnelles, “Bulletin of the Royal Academy of Sciences 
of Denmark”, 1910, 395-435; Aristarchus of Samos, Aristarchus of Samos, the Ancient 
Copernicus. A  History of Greek Astronomy to Aristarchus Together With Aristarcus’s 
Treatise ‘On the sizes and distances of the Sun and Moon’, T. Heath (Ed.), Clarendon Press, 
Oxford 1913; Apollonius of Perga, Apollonii Pergaei Que Graece Extant Cum Commentariis 
Antiquis. Edidit Et Latine Interpretatus Est I. L. Heiberg, vols. I, II, I. L. Heiberg (Ed.), B. G. 
Teubner, Lipsiae 1891 (retrieved 2008, from http://www.wilbourhall.org/).
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Aristotle in the Nichomachean Ethics explicitly discerns numerical 
(1131b 12) and geometric (1132a 1) proportions. h e schema of the develop-
ment of the theories of proportions, presented in this paper, is corroborated 
also by fragments 74b and 99a from the Posterior Analytics61.

Pappus in his commentary on the tenth book of the Elements explains, 
in paragraphs 8 and 6 (Part I), that the term “proportion” is used for numbers 
and spatial magnitudes in dif erent meanings:

Not every ratio, therefore, is to be found with the numbers; nor do 
all things that have a ratio to one-another, have that of a number to 
a number, because in that case all of them would be commensurable 
with one-another, and naturally so, since every number is homoge-
neous with i nitude (or the i nite), number not being plurality, the 
correspondence notwithstanding, but a  dei ned (or limited) plura-
lity62. 

h e next part of this paragraph indicates that, in ancient mathemat-
ics, the dif erences between two types of wholes were essential: “one over 
determined plurality” and “one over undei ned plurality”.63

61 Cf. H. Tredenick, Aristotle. Aristotle in 23 Volumes, vols. 17, 18, translated by H. Treden-
nick, Harvard University Press, Cambridge, MA 1933; William Heinemann Ltd., London 
1989, (retrieved 1997, from: http://www.perseus.tut s.edu/).

62 Cf. W. h omson, & G. Junge, The Commentary of Pappus on Book X of Euclid’s Elements. 
Arabic Text and Translation by William Thomson with Introductory Remarks, Notes, 
and a  Glossary of Technical Terms by Gustav Junge and William Thomson, Harvard 
Semitic Series, vol. VIII, Cambridge, London 1930, p. 71.

63 Cf. Z. Król, op.cit., and  idem, Intuition and History: Change and the Growth of Math-
ematical Knowledge, “International Journal for Knowledge and Systems Science”, Japan 
Advanced Institute of Science and Technology (JAIST), Japan 2006 2(3), 22-32. Cf. also 
idem, O platonizmie w  teorii mnogości, (On Platonism in set theory), „Roczniki Filozo-
i czne KUL”, 2003, 3(51), 225-252; idem, Platon i podstawy matematyki współczesnej, in 
A. Motycka & S. Blandzi (Eds.), Spotkania platońskie. W  dobie rozumu rozproszonego 
wracamy do korzeni., pp. 56-63, Wydawnictwo IFiS PAN, Warszawa 2004; idem, Pla-
tonizm matematyczny i  hermeneutyka, (Hermeneutics and Mathematical Platonism), 
Wydawnictwo IFiS PAN, Warszawa 2006; idem, Geometria starożytna i i lozoi a Platona 
na podstawie Komentarza Pappusa do X księgi Elementów Euklidesa, (Ancient geometry 
and Plato’s philosophy. Remarks concerning the Commentary of Pappus on Book 10 
of Euclid’s ‘Elements’), „Kwartalnik Historii Nauki i  Techniki”, 2006, 3-4, 1-35; idem, 
Wprowadzenie do starożytnych teorii proporcji, (Introduction to the ancient theories of 
proportion), „Kwartalnik Historii Nauki i Techniki”, (in Polish), 2007 52(1), 73-91; idem, 
The Emergence of New Concepts in Science, in: Creative Environments: Issues for Creativity 
Support for the Knowledge Civilization Age. A.P. Wierzbicki, Y. Nakamori eds. Chapter 
XVII, pp. 415-442, Springer Verlag 2007.



30

Z bign i ew K ról

On the other hand, paragraph 664 indicates other types of proportions:

It should be pointed out, however, that the term, proportion, is used in 
one sense in the case of the w h o l e , i.e. the i nite and homogeneous 
continuous quantities, in another sense in the case of the commensu-
rable continuous quantities, and in still another sense in the case of 
the continuous quantities that are named rational. For with reference 
to continuous quantities the term, ratio, is understood in some cases 
only in the sense that it is the relation of i nite continuous quantities to 
one another with respect to greatness and smallness [cf. T_4 –  Z.K.]; 
whereas in other cases it is understood in the sense that it denotes 
some such relation as exists between the numbers [cf. T_5 –  Z.K.], 
all commensurable continuous quantities, for example, bearing, as is 
evident, a ratio to one-another like that of a number to a number; and 
i nally, in still other cases, if we express the ratio in terms of a dei nite, 
assumed measure, we become acquainted with the distinction between 
rationals and irrationals.

Another impulse to develop the ancient theories of proportions was 
due to the divisions of i gures and the classii cations of incommensurable 
magnitudes.

It is possible to see that the main stream of ef orts in mathematics was 
directed to the creation of one mathematical theory, unifying –  as much as it 
was possible –  arithmetic and geometry. h e fundamental role of the highest 
principles: the One and the Dyad, is indicated65.

Hence, the existence of some hidden assumptions and implicit deter-
minants (cf. for instance n a i v e  m e t r i c a l  a p p r o a c h ) for the under-
standing and creation of non-formal ancient mathematics is demonstrated. 
h ey, and their reconstruction, are essential for understanding mathemati-
cal theories in any time. h e reconstruction results in the detection of the 
evolution of some Platonic methods in mathematics, such as the ability to 
operate with the wholes of actually ini nite scopes. h e reconstruction of 
such global implicit determinants for the modern and strictly formalized 
mathematics is also possible66. h erefore, the reconstruction determines 
the “style in force” of mathematical investigations in the given historical 

64 W. h omson, & G. Junge, The Commentary of Pappus …, op.cit.
65 h eon demonstrates that every kind of proportion is generated from the One and the 

Dyad. 
66 Cf. Z. Król, Uwagi o  stylu historycznym matematyki i  rozwoju matematyki (Remarks 

concerning the historical style of mathematics and the development of mathematics), in: 
Światy matematyki. Tworzenie czy odkrywanie?, I. Bondecka-Krzykowska, J. Pogonowski 
(eds.), Wydawnictwo UAM, Poznań 2010.
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period. h e scientii c revolutions, such as the emergence of Newtonian 
physics and dif erential calculus are closely connected with the evolution of 
these implicit determinants which are a part of the hermeneutical horizon 
for mathematics. Such matters are the subject of the hermeneutics of math-
ematics67.                   u
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